
1 - DESCRIPTION DU CÂBLE

Le câble utilisé dans les thermocouples, dit câble à isolant minéral est constitué de deux conducteurs (ou quatre par paires) en métaux différents, d'un isolant en magnésie et d'une gaine métallique.

1.1 - L'ISOLANT MINÉRAL

- L'isolant utilisé dans les câbles pour thermocouples est de la magnésie ou de l'alumine très fortement compactée dans une gaine métallique continue.
- Dans certains cas (atmosphère d'eau sous pression), il est préféré l'alumine (Al₂O₃).
- Les isolants minéraux répondent à la norme ASTM E 235-82.

ISOLANT	MAGNÉSIE %	ALUMINE %	BORE + CADIUM P.P.M.	SOUFRE P.P.M.	P.P.M.
Magnésie	≥99,4	_	≤30	≤50	≤300
Alumine	-	≥99,5	≤30	≤50	≤300

Propriétés

- L'isolant protège les conducteurs contre toute contamination chimique, par exemple l'oxydation, qui pourrait entraîner une dérive rapide de leurs caractéristiques.
- La densité et la conductibilité thermique de la magnésie assurent un temps de réponse pratiquement égal à celui du fil nu de diamètre équivalent.

1.2 - les conducteurs

 a) Les conducteurs des câbles pour thermocouples sont de natures différentes et peuvent être répertoriés comme suit ;

NATURE DES CONDUCTEURS ET NORMES

Symbole	Nature du thermocouple	Polarité	Magnétisme (1)	Repérage des conducteurs couleurs suivant NFC 42324	Sensibilité environ uV/°C
Ţ	Cuivre Cuivre Nickel	+	A A	Jaune Bleu	43
J	Fer Cuivre Nickel	+	M A	Jaune Noir	53
К	Nickel-chrome Nickel aluminium	+	A M	Jaune Violet	41
E	Nickel-chrome Cuivre Nickel	+	A A	Jaune Orange	De 25 à 40
N*	Nickel chrome siliicium (Nicrosill Nickel Silicium (Nisil)	+	A A	Orange Rouge	De 58 à 80
R*	Platine rhodié 13 % Platine	+	A A	Jaune Vert clair	De 5 à 14
S*	Platine rhodié 10 % Platine	+	A A	Jaune Vert clair	De 2 à 12
В*	Platine rhodié 30 % Platine rhodié 6 %	+	A A	Jaune Gris	De 2 à 11

(1) MAGNÉTISME : A = amagnétique M = magnétique * Sur demande uniquement Pour toute autre norme ou spécification particulière, physique ou thermoélectrique, nous consulter.

b) Les câbles pour thermocouples simples ou duplex peuvent être à 2 ou 4 conducteurs (cf § 2 et 3).

1.3 - Gaine du câble pour thermocouples

a) Nature de la gaine

La nature de la gaine des câbles utilisés pour les thermocouples dépend de leur emploi. Ci-après, quelques natures de gaines et leurs caractéristiques. (Pour tout cas particulier, nous consulter. Un grand choix de diamètres et de matériaux de gainage permet de trouver une solution appropriée).

NATURE DES GAINES

NATURE	SYMBOLE	COMPOSITION	TEMPERATURE	NOF	NORMALISATION			
DE LA GAINE		%	DE FUSION "C	AFNOR	AISI	DIN		
Cuivre	С	Cuivre désoxydé au phosphore	1083	Cu/b1	:Xequ	433		
Acier inoxydable	1	Nickel 8 à 11 Chrome 17 à 19 Carbone 0,03	1300 â 1450	Z2 CN 18-10	304L	1.4306		
	1 Mo	Nickel 13 Chrome 17 Carbone 0,03 Molybdène 2,20	1300 à 1450	Z2 CND 18-12	316L	1,4404		
Inconel 600*	Inc	Nickel 72 Chrome 16,5 Fer 8	1370 à 1425	NC 15 Fe	UNS NO 6600	2.4816		
Acier réfractaire	R	Nickel 32,5 Chrome 21 Carbone 0,1	1350 à 1380	Z15 CNS 25-20	310	1.4841		

Sur demande, il est possible de fournir des câbles avec gaine 316 Ti - 321 - 347.

* Marque déposée.

b) Caractéristiques de la gaine

La gaine peut être soudée ou brasée sur divers appareillages.

La gaine métallique continue assure l'étanchéité des câbles pour thermocouples. Cette étanchéité peut être vérifiée par test hélium ou ressuage à l'alcool.

Cette gaine garantit une résistance d'isolement excellente même dans des atmosphères saturées d'humidité.

1.4 - Compatibilité des élements constitutifs et conseils d'utilisation

Les divers couples thermo-électriques cités ci-dessus sont compatibles avec les différents types de gaine réperto-riés dans le tableau ci-dessous compte tenu des températures maximales conseillées d'utilisation (en "C, suivant norme NFC 42.325/87).

NATURE DE GAINE	TYPE DE CÂBLE							
NATURE DE GAINE	К	N	T	J	E			
Aciers inoxydables	600°C	600°C	350°C	600°C	600°C			
Alliages de nickel	1000°C	1100°C		750°C	800°C			
Aciers réfractaires	1000°C	1100°C	1111-11	-	100			

Ces températures tiennent compte : - des alliages thermo-électriques utilisés. de la nature des gaines compatibles,

2 - CÂBLES À 2 CONDUCTEURS POUR THERMOCOUPLE SIMPLE.

2.1 - Principales gammes de câbles et leur appellation.

	TYPE DU COUPLE	TYPE DE C	GAINE	Références	
Symbole	Nature	Nature	Symbole	Northendes	
T	Cuivre/Cuivre Nickel	Cuivre Inox 304 L	C	TC TI	
J	Fer/Cuivre-Nickel	Inox 304 L Inconel 600 Inox 316 L	I Inc IMo	JI Jind JIMo	
K	Nickel chrome/Nickel aluminium	Inox 304 L Inconel 600 Réfractaire 310 Inox 316 L Inox 316 Ti Inox 321 Inox 347	I Inc R IMo IMo Ti iTi INb	KI KInc KR KIMo KIMo Ti KiTi KiNb	
E	Nickel chrome/Cuivre nickel	Inox 304 L Inconel 600 Inox 316 L	I Inc IMo	El Elnc ElMo	
N	Nickel chrome Silicium (Nicrosil) Nickel silicium (Nisil)	Inconel 600 Réfractaire 310	Inc R	Ninc NR	
R	Platine rhodië 13 %/Platine	Platine rhodié 10 %	Pt 10 %/Rh	RPT 10 %/R	
S	Platine rhodië 10 %/Platine	Platine rhodié 10 %	Pt 10 %/Rh	SPt 10 %/Rh	
В	Platine rhodié 30 %/Platine- rhodié 6 %	Platine rhodié 10 %	Pt 10 %/Rh	BPt 10 %/Rh	

2.2 - Types de fabrication

Nous distinguons deux types essentiels de fabrication répertoriés dans les tableaux figurant ci-dessous. Les caractéristiques relatives aux longueurs de fabrication, aux résistances à 20°C et aux diamètres extérieurs ne sont données qu'à titre indicatif et ne sauraient constituer un engagement contractuel de livraison

Les tolérances sont de :
• ± 15 % pour les résistances à 20°C.

• ± 5 % sur les longueurs de livraison.

TOLÉRANCES SUR CARACTÉRISTIQUES DIMENSIONNELLES

DIAMÈTRE EXTERIEUR mm	TOLERANCE mm			
8 - 6 4,5 - 3 - 2 1,5 - 1	± 0,06 ± 0,03 ± 0,02			
0,5 - 0,25	± 0,01			

Deux possibilités sont offertes :

a) Fabrication conforme aux NFC 42325/86 ou ASTM E 235/82

CARACTÉRISTIQUES DIMENTIONNELLES ET TOLÉRANCES

			ique (m)		RESISTANCE A 20°C EN Ω/m								
ant	teur	seur (mm)	the second	Cou	Couple T Coup		ouple J Coupl		uple K Co		ple E	Couple N	
Ø Extérieur (mm)	© Conducteur (mm)	Epaisseur gaine (mm	Longueur th de fabricati	Cuivre	Culvre	Fer	Cuivre Nickel	Nickel- Chrome	Nickel- Aluminium	Nickel- Chrome	Cuivre	Nickel Chrome Silicium	Nickel
8,0 6,35* 6,00 4,75* 4,50 3,17* 3,00 2,00	1,53 1,21 1,13 0,89 0,84 0,58 0,56 0,36	1,00 0,79 0,75 0,59 0,56 0,39 0,37 0,25	55 90 100 160 175 360 400 900	0,009 0,015 0,017 0,027 0,030 0,064 0,070 0,17	0,26 0,42 0,48 0,77 0,87 1,82 1,96 4,72	0,05 0,09 0,10 0,16 0,18 0,38 0,41 0,98	0,26 0,42 0,48 0,77 0,87 1,82 1,95 4,72	0,39 0,62 0,71 1,14 1,28 2,69 2,88 6,98	0,17 0,27 0,31 0,50 0,56 1,17 1,26 3,04	0,39 0,62 0,71 1,14 1,28 2,69 2,88 6,98	0,26 0,42 0,48 0,77 0,87 1,82 1,96 4,72	0,53 0,85 0,98 1,57 1,73 3,71 3,98 9,63	0,196 0,31 0,36 0,58 0,65 1,36 1,46 3,54
1,59* 1,50 1,00* 0,50 0,25	0,32 0,3 0,2 0,1 0,05	0,24 0,23 0,15 0,076 0,038	400 400 400 100 50	0,21 0,24 0,55 -	5,97 6,8 15,3	1,24 1,41 3,20	5,97 6,80 15,3	8,83 10,0 22,3 90,0 371,0	3,98 4,16 9,40 37,0 154,0	8,83 10,0 22,30	5,97 6,8 15,3	12,19 13,86 31,20 124,84	4,47 5,09 11,46 45,86

^{*} Diamètres extérieurs suivant ASTM.

b) Fabrication particulière sur demande.

Ø Ø Extérieur Conducteur				Résistance à 20°C, en Ω/m.							
	Ø	Épaisseur		Couple T		Couple J		Couple K			
	gaine théorique de (mm) fabrication (m)	Cuivre	Cuivre nickel	Fer	Cuivre nickel	Nickel- Chrome	Nickel- Aluminium				
8,0 6,0 4,5 3.0	1,90 1,42 1,07 0,71	0,75 0,56 0,42 0,28	50 90 165 370	0,006 0,01 0,02 0,03	0,16 0,30 0,53 1,21	0,03 0,06 0,11 0,25	0,16 0,30 0,53 1,21	0,25 0,44 0,79 1,78	0,11 0,18 0,33 0,74		

DESIGNATION	4.5	K	Inc
	1009000	1	nature de la gaine : inconel
Øextérieur : 4,5 mm			type du couple : nickel-chrome/nickel aluminiu

3 - CÂBLES À 4 CONDUCTEURS POUR THERMOCOUPLE DUPLEX

3.1 - Principales gammes de câbles et leur appellation

TYPE DU COUPLE	CUIVRE-CUIVRE NICKEL T	FER-CUIVRE NICKEL J	NICKEL-CHROME /NICKEL-ALUMINIUM K					
Nature de la gaine	Inox I	Inox I	Inox I	Inconel Inc	Réfractaire R			
Référence	DTI	ונם	DKI DKI MO	DK INC	D KR			

3.2 - Types de fabrication

Deux types principaux de fabrication existent. Leurs caractéristiques figurent dans les tableaux ci-dessous et leurs tolérances sont identiques à celles des câbles à 2 conducteurs (cf. p. 5).

a) Fabrication suivant l'épaisseur de gaine de la NFC 42325/86 ou ASTM E 235/82.

		Epaisseur gaine (mm)	Longueur théorique de fabrication (m)	Résistance à 20 °C, en Ω/m							
Ø	Ø			Couple T		Couple J		Couple K			
Extérieur Conducteu (mm) (mm)	Conducteur (mm)			Cuivre	Cuivre nickel	Fer	Cuivre nickel	Nickel- Chrome	Nickel- Aluminium		
*B	1,34	1,00	56	0.012	0,34	0,07	0,34	0,51	0,22		
6,35	1,06	0.79	90	0.019	0,54	0,11	0,54	0,81	0,35		
6.0	1,00	0.75	100	0.021	0,61	0,13	0,61	0,92	0,39		
*4.75	0,79	0.59	160	0.035	0,98	0,20	0,98	1,47	0,63		
4,5	0,75	0.56	175	0.038	1,09	0,23	1,09	1,63	0,70		
*3,17	0,53	0.39	360	0.077	2.17	0,45	2,17	3,26	1,40		
3,0	0,50	0,37	400	0,086	2,44	0,51	2,44	3,67	1,58		
2,0	0,33	0,25	900	0,199	5,61	1,17	5,61	8,42	3,62		
*1,59 1,5	0,28 0,26	0,24	400 400	0,276	7,80 9,04	1,62 1,88	7,80 9,04	11,69 13,56	5,03 5,84		

^{*}Diamètre extérieur suivant les dimensions ASTM,

b) Fabrication particulière sur demande

		Épaisseur gaine (mm)	Longueur théorique de fabrication (m)	Résistance à 20°C; en Ω/m							
Ø Extérieur (mm)	© Conducteur (mm)			Couple T		Couple J		Couple K			
				Cuivre	Cuivre nickel	Fer	Cuivre nickel	Nickel- Chrome	Nickel- Aluminium		
8,0 6,0 4,5 3,0	1,42 1,07 0,80 0,53	0,72 0,53 0,42 0,38	50 90 165 370	0,010 0,018 0,034 0,077	0,30 0,53 0,95 2,17	0,06 0,11 0,20 0,45	0,30 0,53 0,95 2,17	0,45 0,80 1,43 3,26	0,20 0,34 0,62 1,40		

- Sur demande, nous pouvons livrer des câbles à 4 conducteurs à gaine renforcée pour :

- type E en 304 L - Inconel 600 - 316 L - type N en Inconel 600 et en acier réfra • type N en Inconel 600 et en acier réfractaire 310.

DÉSIGNATION

4.5 Inc

L nature de la gaine : inconel câble à 4 conducteurstype du couple : nickel-chrome/nickel aluminium

Ø extérieur : 4,5 mm _______type du couple : nickel-chror Pour les câbles type ASTM, faire précéder le symbole par la lettre A. Ex : D 4,5 AKINC

CABLES **THERMOCOUPLES**

LES AMES - Composition et résistance de ligne

Section en mm²	CONTRACTOR OF THE PARTY OF THE	Résistance de ligne Ω/m Câble 1 paire - Aller / Retour			Nature des Ames		
		K	J	Т	+ -		
0,03	1 x 0,2mm	31,9	19,5	16,1		Nickel - Chrome	Nickel - Allié
0,05	1 x 0,25mm	19,6	11,6	9,9	K		
0,2	1 x 0,5mm	4,9	2,9	2,5		Fer	Constantan
0,22	7 x 0,2 ou 3 x 0,3mm	4,4	2,7	2,2	J		
0,5	1 × 0,8mm	1,93	1,17	0,98	т	Cuivre	Constantan
2	1 x 1,6mm	0,48	0,28	0.24			

Autres thermocouples : sur demande

TOLERANCES Suivant Normes NF EN 60584-2 et IEC 584-2

	Classe 1		Classe 2		
K	J	T	К	J	Т
-40°C à 375°C	-40°C à 375°C	-40°C à +125°C	-40°C à 333°C	-40°C à 333°C	-40°C à +133°C
+/- 1,5°C	+/- 1,5°C	+/- 0,5°C	+/- 2,5°C	+/- 2.5°C	+/- 1°C
375°C à 1000°C	375°C à 750°C	+125°C à 350°C	333°C à 1200°C	333°C à 750°C	+133°C à 350°C
+/- 0,004(t)	+/- 0,004(t)	+/- 0,004(t)	+/- 0,0075(t)	+/- 0,0075(t)	+/- 0,0075(t)

CODE DE COULEURS Suivant Norme IEC 584-3

Symbole	Cond	Gaine	
	Positif	Négatif	extérieure
K	Vert	Blanc	Vert
J	Noir	Blanc	Noir
Т	Brun	Blanc	Brun